
beginner

beginner ii

COLLABORATORS

TITLE :

beginner

ACTION NAME DATE SIGNATURE

WRITTEN BY March 1, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

beginner iii

Contents

1 beginner 1

1.1 Floating-Point Numbers . 1

1.2 Floating-Point Values . 1

1.3 Floating-Point Calculations . 2

1.4 Floating-Point Functions . 4

1.5 Accuracy and Range . 6

beginner 1 / 7

Chapter 1

beginner

1.1 Floating-Point Numbers

Floating-Point Numbers

Floating-point or real numbers can be used to represent both very
small fractions and very large numbers. However, unlike a LONG which can
hold every integer in a certain range (see Variable types), floating-point
numbers have limited accuracy. Be warned, though: using floating-point
arithmetic in E is quite complicated and most problems can be solved
without using floating-point numbers, so you may wish to skip this chapter
until you really need to use them.

Floating-Point Values

Floating-Point Calculations

Floating-Point Functions

Accuracy and Range

1.2 Floating-Point Values

Floating-Point Values
=====================

Floating-point values in E are written just like you might expect and
are stored in LONG variables:

DEF x
x:=3.75
x:=-0.0000367
x:=275.0

beginner 2 / 7

You must remember to use a decimal point (without any spaces around it) in
the number if you want it to be considered a floating-point number, and
this is why a trailing .0 was used on the number in the last assignment.
At present you can’t express every floating-point value in this way; the
compiler may complain that the value does not fit in 32-bits if you try to
use more than about nine digits in a single number. You can, however, use
the various floating-point maths functions to calculate any value you want
(see

Floating-Point Functions
).

1.3 Floating-Point Calculations

Floating-Point Calculations
===========================

Since a floating-point number is stored in a LONG variable it would
normally be interpreted as an integer, and this interpretation will
generally not give a number anything like the intended floating-point
number. To use floating-point numbers in expressions you must use the
(rather complicated) floating-point conversion operator, which is the !
character. This converts expressions and the normal maths and comparison
operators to and from floating-point.

All expressions are, by default, integer expressions. That is, they
represent LONG integer values, rather than floating-point values. The
first time a ! occurs in an expression the value of the expression so far
is converted to floating-point and all the operators and variables after
this point are considered floating-point. The next time it occurs the
(floating-point) value of the expression so far is converted to an
integer, and the following operators and variables are considered integer
again. You can use ! as often as necessary within an expression. Parts
of an expression in parentheses are treated as separate expressions, so
are, by default, integer expressions (this, includes function call
arguments).

The integer/floating-point conversions performed by ! are not simple.
They involve rounding and also bounding. Conversion, for example, from
integer to floating-point and back again will generally not result in the
original integer value.

Here’s a few commented examples, where f always holds a floating-point
number, and i and j always hold integers:

DEF f, i, j
i:=1
f:=1.0
f:=i! -> i converted to floating-point (1.0)
f:=6.2
i:=!f! -> the expression f is floating-point,

-> then converted to integer (6)

In the first assignment, the integer value one is assigned to i. In the

beginner 3 / 7

second, the floating-point value 1.0 is assigned to f. The expression on
the right-hand side of third assignment is considered to be an integer
until the ! is met, at which point it is converted to the nearest
floating-point value. So, f is assigned the floating-point value of one
(i.e., 1.0), just like it is by the second assignment. The expression in
the final assignment needs to start off as floating-point in order to
interpret the value stored in f as floating-point. The expression
finishes by converting back to integer. The overall result is to turn the
floating-point value of f into the nearest integer (in this case, six).

The assignments below are more complicated, but should be
straight-forward to follow. Again, f always holds a floating-point
number, and i and j always hold integers.

f:=!f*f -> the whole expression is floating-point,
-> and f is squared (6.2*6.2)

f:=!f*(i!) -> the whole expression is floating-point,
-> i is converted to floating-point and
-> multiplied by f

j:=!f/(i!)! -> the whole division is floating-point,
-> with the result converted to integer

j:=!f!/i -> floating-point f is converted to integer
-> and is (integer) divided by i

IF !f<230.0 THEN RETURN 0 -> floating-point comparison <
IF !f>(i!) THEN RETURN 0 -> i converted to floating-point,

-> then compared to f

If the ! were omitted from the first assignment, then not only would the
value in f be interpreted (incorrectly) as integer, but the multiplication
performed would be integer multiplication, rather than floating-point. In
the second assignment, the parentheses around the expression involving i
are crucial. Without the parentheses the value stored in i would be
interpreted as floating-point. This would be wrong because i actually
stores an integer value, so parentheses are used to start a new expression
(which defaults to being integer). The value of i is then interpreted
correctly, and finally converted to floating-point (by the ! just before
the closing parenthesis). The (floating-point) multiplication then takes
place with two floating-point values, and the result is stored in f. In
the last two assignments (using division), j is assigned roughly the same
value. However, the expression in the first assignment allows for greater
accuracy, since it uses floating-point division. This means the result
will be rounded, whereas it is truncated when integer division is used.

One important thing to know about floating-point numbers in E is that
the following assignments store the same value in g (again, f stores a
floating-point number). This is because no computation is performed and
no conversion happens: the value in f is simply copied to g. This is
especially important for function calls, as we shall see in the next
section. Strictly speaking, however, the second version is better, since
it shows (to the reader of the code) that the value in f is meant to be
floating-point.

g:=f
g:=!f

beginner 4 / 7

1.4 Floating-Point Functions

Floating-Point Functions
========================

There are functions for formatting floating-point numbers to E-strings
(so that they can be printed) and for decoding floating-point numbers from
strings. There are also a number of built-in, floating-point functions
which compute some of the less common mathematical functions, such as the
various trigonometric functions.

RealVal(string)
This works in a similar way to Val for extracting integers from a
string. The decoded floating-point value is returned as the regular
return value, and the number of characters of string that were read
to make the number is returned as the first optional return value.
If a floating-point value could not be decoded from the string then
zero is returned as the optional return value and the regular return
value will be zero (i.e., 0.0).

RealF(e-string,float,digits)
Converts the floating-point value float into a string which is stored
in e-string. The number of digits to use after the decimal point
is specified by digits, which can be zero to eight. The
floating-point value is rounded to the specified number of digits. A
value of zero for digits gives a result with no fractional part and
no decimal point. The e-string is returned by this function, and
this makes it easy to use with WriteF.

PROC main()
DEF s[20]:STRING, f, i
f:=21.60539
FOR i:=0 TO 8

WriteF(’f is \s (using digits=\d)\n’, RealF(s, f, i), i)
ENDFOR

ENDPROC

Notice that the floating-point argument, f, to RealF does not need a
leading ! because we are simply passing its value and not performing
a computation with it. The program should generate the following
output:

f is 22 (using digits=0)
f is 21.6 (using digits=1)
f is 21.61 (using digits=2)
f is 21.605 (using digits=3)
f is 21.6054 (using digits=4)
f is 21.60539 (using digits=5)
f is 21.605390 (using digits=6)
f is 21.6053900 (using digits=7)
f is 21.60539000 (using digits=8)

Fsin(float), Fcos(float), Ftan(float)
These compute the sine, cosine and tangent (respectively) of the
supplied float angle, which is specified in radians.

beginner 5 / 7

Fabs(float)
Returns the absolute value of float, much like Abs does for
integers.

Ffloor(float), Fceil(float)
The Ffloor function rounds a floating-point value down to the
nearest, whole floating-point value. The Fceil function rounds it up.

Fsqrt(float)
Returns the square root of float.

Fpow(x,y), Fexp(float)
The Fpow function returns the value of x raised to the power of y
(which are both floating-point values). The Fexp function returns
the value of e raised to the power of float, where e is the
mathematically special value (roughly 2.718282). ‘Raising to a
power’ is known as exponentiation.

Flog10(float), Flog(float)
The Flog10 function returns the log to base ten of float (the
common logarithm). The Flog function returns the log to base e of
float (the natural logarithm). Flog10 and Fpow are linked in the
following way (ignoring floating-point inaccuracies):

x = Fpow(10.0, Flog10(x))

Flog and Fexp are similarly related (Fexp could be used again, using
2.718282 as the first argument in place of 10.0).

x = Fexp(Flog(x))

Here’s a small program which uses a few of the above functions, and
shows how to define functions which use and/or return floating-point
values.

DEF f, i, s[20]:STRING

PROC print_float()
WriteF(’\tf is \s\n’, RealF(s, !f, 8))

ENDPROC

PROC print_both()
WriteF(’\ti is \d, ’, i)
print_float()

ENDPROC

/* Square a float */
PROC square_float(f) IS !f*f

/* Square an integer */
PROC square_integer(i) IS i*i

/* Converts a float to an integer */
PROC convert_to_integer(f) IS Val(RealF(s, !f, 0))

/* Converts an integer to a float */
PROC convert_to_float(i) IS RealVal(StringF(s, ’\d’, i))

beginner 6 / 7

/* This should be the same as Ftan */
PROC my_tan(f) IS !Fsin(!f)/Fcos(!f)

/* This should show float inaccuracies */
PROC inaccurate(f) IS Fexp(Flog(!f))

PROC main()
WriteF(’Next 2 lines should be the same\n’)
f:=2.7; i:=!f!
print_both()
f:=2.7; i:=convert_to_integer(!f)
print_both()

WriteF(’Next 2 lines should be the same\n’)
i:=10; f:=i!
print_both()
i:=10; f:=convert_to_float(i)
print_both()

WriteF(’f and i should be the same\n’)
i:=square_integer(i)
f:=square_float(f)
print_both()

WriteF(’Next 2 lines should be the same\n’)
f:=Ftan(.8)
print_float()
f:=my_tan(.8)
print_float()

WriteF(’Next 2 lines should be the same\n’)
f:=.35
print_float()
f:=inaccurate(f)
print_float()

ENDPROC

The convert_to_integer and convert_to_float functions perform similar
conversions to those done by ! when it occurs in an expression. To make
things more explicit, there are a lot of unnecessary uses of !, and these
are when f is passed directly as a parameter to a function (in these
cases, the ! could safely be omitted). All of the examples have the
potential to give different results where they ought to give the same, and
this is due to the inaccuracy of floating-point numbers. The last example
has been carefully chosen to show this.

1.5 Accuracy and Range

Accuracy and Range
==================

A floating-point number is just another 32-bit value, so can be stored
in LONG variables. It’s just the interpretation of the 32-bits which

beginner 7 / 7

makes them different. A floating-point number can range from numbers as
small as 1.3E-38 to numbers as large as 3.4E+38 (that’s very small and
very large if you don’t understand the scientific notation!). However,
not every number in this range can accurately be represented, since the
number of significant digits is roughly eight.

Accuracy is an important consideration when trying to compare two
floating-point numbers and when combining floating-point values after
dividing them. It is usually best to check that a floating-point value is
in a small range of values, rather than just a particular value. And when
combining values, allow for a small amount of error due to rounding etc.
See the ‘Reference Manual’ for more details about the implementation of
floating-point numbers.

	beginner
	Floating-Point Numbers
	Floating-Point Values
	Floating-Point Calculations
	Floating-Point Functions
	Accuracy and Range

